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Abstract

A crucial issue in heterogeneous domain adaptation (HDA) is the ability to learn a feature map-
ping between different types of features across domains. Inspired by language translation, a word
translated from one language corresponds to only a few words in another language, we present
an efficient method named Sparse Heterogeneous Feature Representation (SHFR) in this paper for
multi-class HDA to learn a sparse feature transformation between domains with multiple classes.
Specifically, we formulate the problem of learning the feature transformation as a compressed sens-
ing problem by building multiple binary classifiers in the target domain as various measurement
sensors, which are decomposed from the target multi-class classification problem. We show that
the estimation error of the learned transformation decreases with the increasing number of binary
classifiers. In other words, for adaptation across heterogeneous domains to be successful, it is nec-
essary to construct a sufficient number of incoherent binary classifiers from the original multi-class
classification problem. To achieve this, we propose to apply the error correcting output correct-
ing (ECOC) scheme to generate incoherent classifiers. To speed up the learning of the feature
transformation across domains, we apply an efficient batch-mode algorithm to solve the resultant
nonnegative sparse recovery problem. Theoretically, we present a generalization error bound of our
proposed HDA method under a multi-class setting. Lastly, we conduct extensive experiments on
both synthetic and real-world datasets to demonstrate the superiority of our proposed method over
existing state-of-the-art HDA methods in terms of prediction accuracy and training efficiency.
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1. Introduction

In many applications, it is often expensive or time consuming to annotate sufficient labeled training
data to build machine learning-based information systems. There may therefore be only a few la-
beled training data in the domain of interest but many labeled training data in another domain that is
referred to as a source domain. Because of the differences between domains, a model trained on the
labeled data in the source domain cannot be applied directly to the target domain. To address this
problem, domain adaptation that aims to adapt a model from a source domain to a target domain with
little or no additional human supervision has been proposed (Blitzer et al., 2006; Jiang and Zhai,
2007; Huang et al., 2007; Pan et al., 2008, 2011). Apart from thorough theoretical studies (Ben-
David et al., 2006; Ben-David et al., 2010), domain adaptation techniques have been successfully
applied to various applications, such as WiFi localization (Pan et al., 2008, 2011), Natural Language
Processing applications (Daumé III, 2007; Jiang and Zhai, 2007), sentiment analysis (Blitzer et al.,
2007b; Pan et al., 2010; Seah et al., 2011; Zhou et al., 2014, 2016a), object categorization (Duan
et al., 2009; Gong et al., 2012; Hoffman et al., 2013), object detection (Donahue et al., 2013; Hoff-
man et al., 2014) and information retrieval (Zhou et al., 2016b, 2018).

Most existing domain adaptation works are based on the assumption that different domain data
can be represented by the same feature space of the same dimensionality (Pan and Yang, 2010).
However, this assumption may not hold in many real-world scenarios. For instance, in a cross-
language (e.g., English/Spanish) text classification task (Prettenhofer and Stein, 2010), the feature
spaces are referred to as vocabularies in different languages, and the features across domains are
neither in the same feature space nor of the same dimensionality. To relax this assumption, there
has been an increased focus on domain adaptation across heterogeneous feature spaces, which is re-
ferred to as Heterogeneous Domain Adaptation (HDA) (Dai et al., 2008; Yang et al., 2009). Besides
cross-language text classification, many other real-world applications can be formulated as an HDA
problem, such as an image classification task using auxiliary text data (Zhu et al., 2011), where
the heterogeneous features are referred to as pixels and bags of textual words, respectively, image
classification by using auxiliary images with different sets of features (Saenko et al., 2010; Kulis
et al., 2011), where the heterogeneous features are referred to as different computer vision features,
and so on.

Existing HDA approaches can be classified into two main categories. In the first category, two
dense feature mappings P and Q can be learned to transform the source domain data XS and target
domain data XT , respectively, to a new latent common feature space such that the difference be-
tween the mapped domain data PXS and QXT is reduced (Shi et al., 2010; Prettenhofer and Stein,
2010; Wang and Mahadevan, 2011; Duan et al., 2012). For example, Shi et al. (2010) proposed
a heterogeneous spectral mapping (HeMap) method to learn dense orthogonal mappings based on
spectral embedding without using any label information. The resultant optimization problem is a
standard eigen-decomposition problem. However, this approach is known to suffer from the scala-
bility issue. Wang and Mahadevan (2011) proposed a manifold alignment method known as DAMA
to align heterogeneous features into a latent space based on manifold regularization. Unfortunately,
DAMA only works on data that has a manifold structure. This limits its transferability to data on
which the manifold assumption is satisfied. Furthermore, the use of DAMA results in a generalized
eigen-decomposition problem of a series of matrices whose sizes depend on the dimensionality of
the data. Duan et al. (2012) proposed a Heterogeneous Feature Augmentation (HFA) method to
augment heterogeneous features with homogeneous common features learned using a maximum-
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margin approach from both source and target domains. However, the proposed model results in an
expensive semidefinite program (SDP) problem.

In the second category, a dense feature mapping G can be learned to transform heterogeneous
data from one domain to the other domain directly so that the difference between GXS and XT

can be minimized or the alignment between GXS and XT can be maximized. Harel and Mannor
(2011) proposed a method named MOMAP to learn dense rotation matrices to match data distribu-
tions between the source and target domains. The resultant optimization problem is solved through
singular value decomposition (SVD) for each class in an independent way. Kulis et al. (2011) pro-
posed an asymmetric regularized cross-domain transformation (ARC-t) method to learn asymmetric
transformation across domains based on metric learning. Similar to DAMA, ARC-t also utilizes the
label information to construct the similarity and dissimilarity constraints between instances from the
source and target domains, respectively. However, the computational complexities of ARC-t and its
kernelized version depend quadratically on the feature dimensions and the data size, respectively.

Though most existing HDA methods have shown promising results, they still suffer from the
following three major limitations.

1. Dense Feature Mappings. Existing methods tend to recover dense feature mappings, which
is not tenable without sufficient constraints. As we will show, dense feature mappings may
inevitably lose interpretability and contain significant amount of noise, which may affect the
classification performance.

2. Multi-class problem. To address multi-class classification problems, most existing HDA
methods (Dai et al., 2008; Wang and Mahadevan, 2011; Duan et al., 2012) simply adopt
the one-vs-all strategy to learn multiple binary classifiers independently. Unfortunately, this
strategy fails to fully explore the underlying structure among multiple classes. Consequently,
this heuristic scheme is unable to guarantee good performance for multi-class HDA problems.

3. High Computational Cost. Since the size of the feature mapping G scales with the product
of the dimensionality of the source and target domains, the computational cost to estimate
the mapping is extremely high, especially for high-dimensional source and target data, e.g.
MOMAP, HeMap, DAMA, ARC-t. To address this computational issue, Duan et al. (2012)
and Kulis et al. (2011) proposed kernelized versions to learn the feature mapping. However,
the kernelized methods still suffer from high computational cost on large-scale data in terms
of the number of data instances.

2. Motivations and Contributions

In this work, we propose a Sparse Heterogeneous Feature Representation (SHFR) approach to
address the above issues under following assumptions.

2.1. Motivations

1. Sparse feature representation: The feature mapping G between two domains is row-sparse,
i.e., each target domain feature can be represented by a small subset of the source domain
features.

2. Class-invariance transformation: Instances belonging to different classes share the same
feature mapping G.
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Figure 1: Illustration of the sparse feature representation matrix.

The above two assumptions are common in real-world multilingual text categorization appli-
cations. Recall that the sparsity assumption of the feature mapping across domains implies that
each feature in one domain can only be represented by a small subset of features in another do-
main. Here, we still use the multi-language (i.e., English/Spanish) text classification problem as
a motivating example. Typically, the word “Sano” in Spanish has a similar meaning to the words
“Great”, “Good”, “Wholesome”, and “healthy” in English, but not to all English words. There-
fore, by assuming that the feature mapping across domains is linear, a feature or word in the
Spanish domain can be represented by a linear combination of only several features or words
in the English domain. As illustrated in Figure 2.1, the sparse matrix G denotes the feature
mapping from the English domain to the Spanish domain. Based on the sparse matrix G, the
word “Sano” in Spanish can be represented sparsely by only four words in English as “Sano′′ =
0.5×“Great′′+0.3×“Good′′+0.1×“Wholesome′′+0.1×“Healthy′′. This sparsity characteristic,
which also facilitates a significant reduction in computational cost on very high-dimensional data,
has not been explored in existing HDA methods. The feature mapping of the word “Sano” is invari-
ant for different classes, for example, “CCAT” and “C15”. To encode the class-invariance property
into the feature mapping, we propose to learn a common G underlying all the classes which has
a similar spirit to multi-task feature learning (Argyriou et al., 2007) and domain-invariant feature
learning (Gong et al., 2013). We first decompose a multi-class classification problem into multiple
binary classification tasks, and then jointly optimize all the binary classification tasks and the feature
mapping G, such that G is class-invariant to all the binary classification tasks.

2.2. Our Contributions

Based on these observations, we propose a new approach to learning a feature mapping for HDA
with application to cross-lingual multi-class text categorization. To estimate this a feature mapping,
we leverage the weight vectors of the binary classifiers learned in the source and target domains.
We then formulate the problem of learning the feature mapping between domains as a Compressed
Sensing (CS) problem, which aims to recover a sparse signal from a small number of measurements
with respect to an underdetermined linear system by taking advantage of the sparseness or com-
pressibility of the signal (Donoho, 2006; Candès et al., 2006). The main contributions of this paper
are as follows:

4



MULTI-CLASS HETEROGENEOUS DOMAIN ADAPTATION

1. We propose a Sparse Heterogeneous Feature Representation (SHFR) approach to learn
a sparse transformation for HDA by exploring the common underlying structures between
multiple classes.

2. Our major finding is that, based on the CS theory, a sparse feature mapping can be learned if
and only if a sufficient number of classifiers are provided. Based on this analysis, we propose
to generate sufficient classifiers under the Error Correcting Output Correcting (ECOC)
scheme to accurately estimate the sparse feature mapping.

3. To reduce the high computational cost, we propose a batch-mode pursuit algorithm to ef-
ficiently solve the resultant nonnegative lasso problem of SHFR. The computational cost of
SHFR is independent of the data size and the dimensionality of the source domain data, and
scales linearly only with size of the dimensionality of the target domain data.

4. This paper is the first to present a generalization error bound for multi-class HDA which is
dependent on the number of tasks as well as the degree of sparsity of the feature mapping G.

The remainder of the paper is organized as follows. In Section 3, we first present how to for-
mulate an HDA problem as a compressed sensing problem, and describe the detail of the proposed
method, SHFR. We then theoretically analyze a generalization error bound for SHFR in Section 4,
and develop a batch-mode algorithm in Section 5 to efficiently solve the resultant compressed sens-
ing problem. In Section 6, we conduct extensive experiments on both toy and real-world datasets
to demonstrate the effectiveness and efficiency of SHFR. We conclude this paper and discuss future
work in Section 7.

3. Sparse Heterogeneous Feature Representation

We study the HDA problem with one source domain and one target domain under the multi-class
setting. Let {(xSi , ySi)}

nS
i=1 denote a set of labeled training instances of the source domain, where

xSi ∈ RdS denotes the i-th instance, and ySi ∈ {1, 2, · · · , c} denotes its label. Let {(xTi , yTi)}
nT
i=1

be a set of labeled training instances of the target domain, where nT � nS , xTi ∈ RdT , and
yTi ∈ {1, 2, · · · , c}.

Given a binary task t ∈ {1, 2, · · · , nc}, we assume that the classifiers for both source and target
domain are linear, which can be written as f t(x) = wt>x, where wt is the weight vector of the
t-th classifier. Since there are sufficient labeled data in the source domain, i.e., {(xSi , ySi)}

nS
i=1,

we can learn a robust set of weight vectors {wt
S}

nc
t=1 for the source classifiers of the binary tasks

decomposed from the multi-class classification problem. Similarly, we can build a corresponding
set of weight vectors {wt

T }
nc
t=1 with limited labeled data {(xTi , yTi)}

nT
i=1 for the target domain.

3.1. Feature Mapping for HDA

Recall that, for HDA problems, the feature dimensions of the source and target domains may not
be equal, i.e., dS 6= dT . To make effective learning across heterogeneous domains possible, a
transformation matrix G ∈ RdT×dS was introduced in ARC-t (Kulis et al., 2011; Saenko et al.,
2010) to learn the similarity x>TiGxSi between a source instance xSi ∈ RdS and a target instance
xTi ∈ RdT . Data points can be transformed from the source feature space to the target feature
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space via xTi = GxSi , or equivalently, the target domain data can be mapped into the source do-
main via G> (Saenko et al., 2010). To learn the transformation matrix G, corresponding pairs
across domains are usually supposed to be given in advance (Qi et al., 2011) or generated based
on the label information in both the source and target domains (Saenko et al., 2010). However,
in practice, instance-correspondences between domains are usually missing, or the constructed in-
stance correspondences using label information are not precise. Therefore, instead of learning the
transformation by using the input raw data directly, we adapt an idea from a multi-task learning
method (Ando and Zhang, 2005)1, and propose to learn the feature mapping across heterogeneous
features based on the source and target predictive structures, i.e., {wt

S}’s and {wt
T }’s.

We can either learn the transformation matrix G ∈ RdT×dS by maximizing the dependency be-
tween the transformed weight vectors of source classifiers and the weight vectors of target classifiers
via

max
G

wt>
T Gwt

S ,

or by minimizing the distance between these two vectors via

min
G
‖wt

T −Gwt
S‖.

For simplicity in theoretical analysis, we adopt the latter objective to learn the transformation G.
Given a binary task t ∈ {1, · · · , nc} and a transformation G ∈ RdT×dS , the relationship between
the weight vectors of the source and target classifiers can be modeled as follows,

wt
T −Gwt

S = wt
∆,

where wt
∆ is referred to as a “delta” weight vector, and its `2-norm ‖wt

∆‖2 is used to measure the
difference between the target weight vector wt

T and the transformed source weight vector Gwt
S .

Note that the relationship is linear. This is because, in this paper, we focus on the application of
HDA on cross-language text categorization, where using a linear form to model the relationship of
predictive structures between domains is more suitable for high-dimensional text data. For modeling
a nonlinear relationship between the source and target predictive structures, which may be more
useful in other application areas, e.g., image classification or speech recognition, it is possible to
apply an explicit nonlinear feature mapping φ(x) to both the source and target domain data before
training the weight vectors for each domain.

3.2. Proposed Formulation

In order to use the robust source domain weight vector wt
S to make predictions on the target domain

data, the difference between the source and target domains after transformation should be mini-
mized. We therefore propose to learn the transformation G by minimizing ‖wt

∆‖2. As mentioned
in Section 2, the feature mapping G should be class-invariant and sparse, and for multi-language
text classification and many other real-world applications, the feature mapping G between feature
spaces should be nonnegative. The motivation of adding the nonnegative constraint on the feature
mapping G is similar to that of applying nonnegative matrix factorization (NMF) (Lee and Seung,

1. Multi-task learning aims to simultaneously learn the classifiers for multiple tasks by sharing parameters between all
the tasks, where each task has only limited labeled data. In contrast, the goal of HDA is to learn a classifier only for
a target domain with limited target label data by leveraging the models learned from the source domain.
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2001) to text mining. Here, we aim to approximate “input vectors”, i.e., target features, by a non-
negative linear combination of a set of nonnegative “basis vectors”, i.e., source features, through the
mapping G. This is also similar to multiple kernel learning (MKL) (Lanckriet et al., 2004; Gönen
and Alpaydın, 2011), where the target kernel is represented by the nonnegative linear combination
of base kernels. In the context of multi-lingual text classification, the nonnegative entries in G can
be deemed as explicit “soft” global co-occurrences between the source and target wordbooks, while
without the nonnegative constraint on G, it is difficult to interpret the physical or semantic meaning
behind G.

Let G = [g1,g2, · · · ,gdT ]>, by imposing the `1-regularization and the nonnegative constraint
on gi, the learning of G can be formulated as the following nonnegative LASSO problem (Yuan
and Lin, 2007; Slawski and Hein, 2011),

min
G

1

nc

nc∑
t=1

‖wt
T −Gwt

S‖22 +

dT∑
i

λi‖gi‖1, (1)

s.t. gi � 0,

where λi > 0 is the trade-off parameter for the regularization term on each gi. In (1), the first term
in the objective aims to minimize the difference between wt

T and Gwt
S over all the nc tasks, the

second term in the objective is to enforce the sparsity on each row of G, and the constraints are used
to preserve nonnegative linear relations between the source and target predictive structures.

Note that in practice, once the source domain classifiers in terms of the weight vectors {wt
S}

nc
t=1

are learned offline, the source domain training data can be discarded. For a new domain of interest,
i.e., the target domain, the weight vectors {wt

T }
nc
t=1 can first be learned with a few labeled training

data, and then G can be learned with {wt
S}

nc
t=1 instead of the original source domain training data,

which significantly reduces the learning complexity. This learning scheme is typically different
from most of the existing HDA methods that require the original source domain training data to be
available to learn the feature mapping across domains. More discussion on the complexity issue can
be found in Section 5.1. As G is learned through all the binary classification tasks, knowledge can
be transferred from the easy tasks to the difficult ones. In Section 4.2, we theoretically show that as
long as a significant number of base binary tasks are not badly designed, the generalization error of
the target classification model is guaranteed to be small.

To solve the optimization problem (1), we can first rewrite it in the following equivalent form,

min
gi

1

nc

nc∑
t=1

dT∑
i=1

(wtTi −wt>
S gi)

2 +

dT∑
i

λi‖gi‖1, (2)

s.t. gi � 0,

where wtTi is the i-th element of the vector wt
T . If we exchange the summation sequences in the

first term, the above optimization problem can be reformulated as the following CS problem,

min
gi

dT∑
i

(
1

nc
‖bi −Dgi‖22 + λi‖gi‖1

)
, (3)

s.t. gi � 0,
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where bi is the concatenated row vector containing {wtTi}
nc
t=1, and D = [w1

S w2
S · · · w

nc
S ]> ∈

Rnc×dS .
This type of CS problem has been well studied, and a number of algorithms have been pro-

posed to solve it, such as nonnegative least squares (NNLS) (Cantarella and Piatek, 2004), accel-
erated proximal gradient algorithm (APG) (Toh and Yun, 2010), and orthogonal matching pursuit
(OMP) (Zhang, 2009). In this work, we propose an efficient batch-mode algorithm to solve it,
which is introduced in detail in Section 5. After the sparse transformation G has been learned, we
can reuse the source domain classifiers to predict its label for any unseen test data x∗T from the target
domain via

y∗T = F ({(Gwt
S)>x∗T }

nc
t=1),

where F (·) is a decision function that combines the predictive results of all the nc source classifiers
to make a final prediction.

4. Generalization Error Bound for HDA

In the past decade, theoretical analysis for domain adaptation has been widely studied (Blitzer et al.,
2007a; Mansour et al., 2009; Ben-David et al., 2010), and has focused on understanding conditions
and assumptions of domain adaptation. However, most previous theoretical works were restricted
by the assumption that the data from the source and target domains are represented in the same
feature space and therefore cannot be applied directly to analyze the generalization error of our pro-
posed method, SHFR, under the HDA setting. In this section, we analyze the theoretical guarantee
of SHFR in detail. In contrast to existing generalization error analysis for homogeneous domain
adaptation, we derive the generalization error bound for SHFR mainly from the perspectives of
ECOC and compressed sensing.

4.1. Estimation Error Bound for Sparse Feature Mapping

Recall that the optimization problem (3) is composed of dT lasso problems. In general, we have
nc < dS for relatively high-dimensional data, therefore (3) is an underdetermined linear sys-
tem (Donoho, 2006). However, based on the compressed sensing theory, if gi is sparse, it is
possible to obtain a solution with sufficient measurements and a matrix D that satisfies certain
conditions (Donoho, 2006; Candès et al., 2006). In particular, one such condition is the sparse
Riesz condition or RIP condition, which requires that any two columns of D should be as perfectly
incoherent as possible (Donoho, 2006; Zhang and Huang, 2008; Candès et al., 2006).

For simplicity in presentation, let ki denote the number of non-sparse entries of gi (or non-
sparsity degree), and ĝi denote an estimator of gi. According to Theorem 3 and Remark 4 in (Zhang
and Huang, 2008), under some restricted conditions, the estimation error ||gi − ĝi||2 for each in-

dependent subproblem can be bounded by O
(√

ki log dS
nc

)
, where dS denotes the dimensionality of

the source domain data and nc is the number of tasks. Hence, we can obtain the following lemma.

Lemma 1 Under the sparse Riesz condition, the estimation error ‖∆GCS‖F = ‖G − Ĝ‖F in

(1) is bounded by O
(
dT

√
k log dS
nc

)
, where k, dS , dT , nc, Ĝ denote the largest row non-sparsity

degree of G, the dimensionality of the source and target domain data, the number of tasks, and the
estimator of G, respectively.

8



MULTI-CLASS HETEROGENEOUS DOMAIN ADAPTATION

Note that besides the sparse Riesz condition, Lemma 1 also holds under some other restricted con-
ditions, such as the RIP condition (Zhang and Huang, 2008; Candès et al., 2006). Both the sparse
Riesz condition and the RIP condition require that any two columns of D should be as incoherent as
possible (Donoho, 2006; Zhang and Huang, 2008; Candès et al., 2006). However, although the RIP
condition for randomly designed matrices has been thoroughly investigated (Baraniuk et al., 2008),
it is more difficult to investigate it for deterministically designed matrices in general. In contrast,
the sparse Riesz condition for a deterministically designed matrix holds with high probability if the
following condition is satisfied (see Proposition 1 in (Zhang and Huang, 2008)):

max
|A|=k

inf
α≥1

∑
j∈A

 ∑
i∈A,i 6=j

|ρji|α/(α−1)

α−1
1/α

≤ δ < 1,

where k denotes the non-sparsity degree and ρji = d′jdi/nc.

Remark 2 Note that ρji can be deemed as the correlation between the columns dj and di. There-
fore, the sparse Riesz condition for a deterministically designed matrix can be evaluated by the
correlations between the columns of the dictionary matrix. The smaller the summary of correla-
tions

∑
|ρji| (or δ) is, the more likely it is that the sparse Riesz condition for D will hold.

According to Lemma 1 and Remark 2, to reduce the reconstruction error of the feature map-
ping G, it is necessary to 1) construct as many classifiers as possible to increase the number of
measurements, i.e., nc needs to be large enough, and 2) ensure the columns of D constructed from
the classifiers are incoherent, i.e., D is incoherent. For a multi-class classification problem with
labels {1, 2, · · · , c}, c binary classifiers can be generated using the one-vs-all strategy (Dietterich
and Bakiri, 1995). However, when c is small, this strategy is not able to generate sufficient bi-
nary classifiers. Alternatively, the one-vs-one strategy may be used to generate c(c − 1)/2 binary
classifiers. The classifiers generated in this way may have large redundancy, however, i.e., some
classifiers may be highly correlated to each other. To address this issue, we propose to use the Error
Correcting Output Codes (ECOC) scheme (Dietterich and Bakiri, 1995; Zhou et al.) to generate
sufficient binary classifiers for estimating the feature mapping G. As will be shown empirically in
Section 6.5, greater incoherence for D over the one-vs-all or one-vs-one strategy can be guaranteed
with a proper design of the ECOC coding matrix.

4.2. Generalization Error Analysis of HDA Based on ECOC

By using the ECOC scheme, the multi-class hypothesis h is composed of a set of binary classifiers
{Ĝwt

S}
nc
t=1. However, in contrast to the one-vs-all scheme, ECOC is more general and consists of

two steps: encoding, i.e., to design a coding matrix M to induce binary classifiers, and decoding,
i.e., to combine the results of all the binary classifiers to make predictions based on the coding
matrix. In order to analyze the generalization error bound of SHFR for multi-class HDA based on
ECOC, we need to first analyze the principles of ECOC for multi-class classification.

As discussed in Dietterich and Bakiri (1995); Allwein et al. (2001), the prediction performance
of a multi-class classification model learned based on the ECOC scheme depends on the design of
the coding matrix. Given a coding matrix M = {−1, 0,+1}c×nc , each class is associated with a
row of the matrix M , and each binary classifier is associated with a column of the matrix M . If
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an entry M(i, j) = +1, it implies that in the classifier f j , class i is considered as a positive class,
while if M(i, j) = −1, it implies that in the classifier f j , the class i is considered as a negative
class, otherwise, the class i is not taken into account for training and testing. In this way, either
the one-vs-all scheme or the one-vs-one scheme can be considered as a special case of the ECOC
scheme.

As pointed out by Dietterich and Bakiri (1995), a coding matrix is good if each codeword, i.e.,
each row, is well-separated in the Hamming distance from each of the other codewords, and each
bit-position function fk, i.e., each column, is uncorrelated with the functions to be learned for the
other bit positions f j , j 6= k. The power of a coding matrix M for multi-class classification can
be measured by the minimum Hamming distance between any pair of its codewords (Allwein et al.,
2001), denoted by ∆min(M). For instance, for the one-vs-all code, ∆min(M) = 2, and for the

one-vs-one code, ∆min(M) =
(( c

2

)
− 1
)
/2 + 1. For a random matrix with components chosen

over {−1, 0, 1}, the expected value of ∆min(M) for any distinct pair of rows is nc/2.
Here, we first follow the proof procedure on error analysis for multi-class classification de-

scribed in Allwein et al. (2001) to analyze the condition of a testing error by the ECOC decoding.
After that, we derive the generalization error bound for the proposed SHFR with the ECOC scheme.

Given a coding matrixM ∈ {−1, 0,+1}c×nc , each row corresponds to a class and each column
corresponds to a binary task. For some t ∈ {1, 2, · · · , nc}, we denote wt

S and htS as the source
domain weight vector and the hypothesis of the t-th task defined by the coding matrix M , respec-
tively. We denote Ĝwt

S and htT as the estimated target domain weight vector and hypothesis of the
t-th task, respectively. We also define the loss function,

L(z) = (1− z)+ = max{1− z, 0}, (4)

in terms of the margin z. For example, given a target domain instance xTi with its label yTi , the
corresponding margin ztTi for t-th task is defined as

ztTi = M(yTi , t)h
t
T (xTi) = M(yTi , t)((Ĝwt

S)>xTi). (5)

For instance, SVM seeks to minimize the margin-based loss under L2 norm regularization as fol-
lows,

min
w

1

2
‖w‖22 + C

m∑
i=1

(1− yiw>xi)+, (6)

where we denote margin z = yiw
>xi. When the prediction is correct and M(yTi , t) 6= 0 for

xTi , then the margin ztTi > 0, which results in 0 ≤ L(z) < 1; when the prediction is wrong and
M(yTi , t) 6= 0 for xTi , then the margin ztTi < 0, which results in L(z) > 1; when M(yTi , t) = 0,
then the margin ztTi = 0, which results in L(z) = 1. We define the L(z) loss-based decoding
scheme for prediction as follows:

dL(M(r, :), h(xTi)) =

nc∑
t=1

L(M(r, t)htT (xTi)). (7)

The predicted label ŷ ∈ {1, 2, · · · , c} is given by ŷ = arg minr dL(M(r), h(xTi)).

10
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To understand the error correction ability of ECOC, we first define the distance between the
codes in any distinct pair of rows, M(r1, :) and M(r2, :), in the coding matrix M as

d(M(r1, :),M(r2, :)) =

nc∑
s=1

d(M(r1, s),M(r2, s)), (8)

where d(M(r1, s),M(r2, s)) = 1−sign(M(r1,s)M(r2,s))
2 .

We define ρ = minr1 6=r2 d(M(r1, :),M(r2, :)) as the minimum distance between any two rows
in the coding matrix M , which is pre-calculated before the training.

Proposition 3 Given a coding matrixM ∈ {−1, 0,+1}c×nc , a set of hypothesis outputs h1(x), · · · , hnc(x)
on a test instance x generated by nc base classifiers, and a convex loss function L(z) in terms of
the margin z, if x is misclassified by the loss-based ECOC decoding, then

nc∑
t=1

L(M(y, t)ht(x)) ≥ ρL(0), (9)

where M(y, t) denotes the corresponding label generated by the coding matrix M of ground truth.
In other words, the loss of the vector of predictions f(x) is greater than ρL(0).

Proof Suppose that the loss-based ECOC decoding incorrectly classifies a test instance x with the
ground-truth label y. Then should then exist a label r 6= y such that

dL(M(y, :), h(x)) ≥ dL(M(r, :), h(x)).

By using the definitions of the loss function and margin introduced in (4) and (5), we denote

zt = M(y, t)ht(x),

z′
t

= M(r, t)ht(x),

By using the definitions of dL in (7), we have
nc∑
t=1

L(zt) ≥
nc∑
t=1

L(z′
t
). (10)

Let S∆ = {t : M(r, t) 6= M(y, t)∧M(r, t) 6= 0∧M(y, t) 6= 0} be the set of columns of M whose
r-th and y-th row entries are different and nonzero, and let S0 = {t : M(r, t) = 0 ∨M(y, t) = 0}
be the set of columns whose r-th or y-th row entry is zero.

If t /∈ S∆ ∪ S0, then zt = z′t, and (10) implies that∑
t∈S∆∪S0

L(zt) ≥
∑

t∈S∆∪S0

L(z′
t
),

which, in turn, implies that
nc∑
t=1

L(zt) ≥
∑

t∈S∆∪S0

L(zt)

≥1

2

∑
t∈S∆∪S0

(L(zt) + L(z′
t
))

=
1

2

∑
t∈S∆

(L(zt) + L(z′
t
)) +

1

2

∑
t∈S0

(L(zt) + L(z′
t
)). (11)

11
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If t ∈ S∆, then z′t = −zt and (L(−zt) + L(zt))/2 ≥ L(0) due to convexity. If t ∈ S0, then either
zt = 0 or z′t = 0. Hence, we obtain that L(z′t) + L(zt) ≥ L(0), and the second term of (11) is at
least L(0)|S0|/2. Therefore,

nc∑
t=1

L(zt) ≥1

2

∑
t∈S∆

(L(zt) + L(z′
t
)) +

1

2

∑
t∈S0

(L(zt) + L(z′
t
))

≥L(0)

(
|S∆|+

|S0|
2

)
=L(0)d(M(r, :),M(y, :)) (12)

≥ρL(0),

where (12) is obtained from the fact that

d(M(r1, s),M(r2, s)) =
1− sign(M(r1, s)M(r2, s))

2

=


0 if M(r, t) = M(y, t) ∧M(r, t) 6= 0 ∧M(y, t) 6= 0

1

2
if M(r, t) = 0 ∨M(y, t) = 0

1 if M(r, t) 6= M(y, t) ∧M(r, t) 6= 0 ∧M(y, t) 6= 0.

This completes the proof.

Remark 4 From Proposition 3, it can be seen that misclassification on a test instance (x, y) implies
that

∑nc
t=1 L(M(y, t)ht(x)) ≥ ρL(0). In other words, the prediction codes are not required to be

exactly the same as ground-truth codes for all the base classifications. As long as the loss is smaller
than ρL(0), ECOC can rectify the error committed by some base classifiers, and is still able to make
an accurate prediction. This error-correcting ability is very important, especially when the labeled
data is insufficient in the target domain. This proposition holds for any convex margin-based loss
function L(z). In this paper, we use hinge loss defined in (4), then L(0) = 1.

Theorem 5 Let ε be the averaged loss of the target domain hypotheses h1
T , . . . , h

nc
T on the target

test data {{(xTi ,M(yTi , t))}
nTe
i=nT +1}

nc
t=1 with respect to the coding matrix M ∈ {−1, 0,+1}c×nc ,

where c is the cardinality of the label set. Let the convex loss function beL(z) = |1−z|+. The multi-
class HDA generalization error of SHFR using sparse random encoding and loss-based decoding
is then at most εnc

ρ .

Proof According to Proposition 3, the loss for any misclassified testing instance xT satisfies

ρL(0) ≤
nc∑
t=1

L(M(yT , t)h
t
T (xT )).

Let a be the number of incorrect predictions for a test sample of size nTe, then we can obtain the
following inequality,

aρL(0) ≤ a
nc∑
t=1

L(M(yT , t)h
t
T (xT )) ≤ nTe

nc∑
t=1

L(M(yT , t)h
t
T (xT )). (13)

12
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Then we have

a ≤
nTe

∑nc
t=1 L(M(yT , t)h

t
T (xT ))

ρL(0)
=
nTeεnc
ρ

, (14)

where ε =
∑nc

t=1 L(M(yT ,t)h
t
T (xT ))

nc
and L(0) = |1− 0|+ = 1.

Therefore, the generalization error rate is bounded by εnc
ρL(0) . The proof is completed.

Remark 6 The above error bound is usually small in the setting studied in this paper for the fol-
lowing reasons. When sufficient classifiers are generated using ECOC and G satisfies the sparsity
assumption, the reconstruction error is small and bounded according to the compressive sensing
theory. On the other hand, the loss L(M(yT , t)h

t
T (xT )) for some {htT }s, which rely on G, may be

large due to there being limited target domain data. The data-independent term nc is usually pre-
defined and the minimum distance ρ is determined correspondingly, as ρ monotonically increases
with nc according to (8). Given the predefined ECOC coding matrix, as long as the averaged loss ε
is small, according to Theorem 5, target classifier is still able to make a precise prediction. In other
words, SHFR is only unable to achieve satisfactory performance in terms of classification accuracy
if most or all of the binary classifiers generated using ECOC trained on the target domain data are
poorly designed.

In summary, we show that the multi-class HDA generalization error of SHFR based on the
ECOC scheme has a linear relationship with the average loss over all generated binary classifiers
when using random encoding and loss-based decoding methods. In addition to theoretical analy-
sis, Garcı́a-Pedrajas and Ortiz-Boyer (2011) conducted comprehensive experiments and concluded
that ECOC and one-vs-one are superior to other multi-class classification schemes, and are the best
choices for either powerful learners or simple learners. Furthermore, Montazer et al. (2012) claimed
that, of several multi-class classification schemes, sparse ECOC is better than dense ECOC, while
dense ECOC is better than one-vs-one, and one-vs-all is the worst. Ghani (2000) proved a theo-
retical bound that a randomly-construct binary matrix is not well row-separated with probability at
most 1/c4, where c is the number of classes. Therefore, in our experiments, we adopt the sparse and
random ECOC scheme for multi-class HDA problems.

4.3. Robust Transformation Learning using ECOC

The robustness of ECOC is another important motivation for using ECOC in SHFR. Recall that the
error-correcting codes can be viewed as a compact form of voting, and a certain number of incorrect
votes can be corrected through the corrected votes (Dietterich and Bakiri, 1995). Given a total
number of T classifiers, the voting-based methods guarantee to make a correct decision as long as
there are bT2 + 1c correct classifiers (Dietterich, 2000), where b c is the floor function that returns
the largest integer not greater than the input of the function. In other words, even though there
are misclassifications due to incorrect base classifiers, good performance can still be achieved in
terms of the final classification accuracy by using the ECOC scheme. It has been shown in previous
research that although bit error is unavoidable in real-world applications, it is still possible to make
correct decisions using the error-correcting codes with a sufficient number of good learners (Ghani,
2000).
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This property is particularly important for the proposed multi-class HDA method, SHFR, since
some of the learned binary classifiers in the target domain may not be accurate due to insufficient
label information. SHFR with ECOC is able to learn a robust transformation matrix G even when
some target binary classifiers are not precise. The robustness of SHFR with ECOC will be verified
empirically in Section 6, where we demonstrate that even with inaccurate target classifiers, the class-
invariant G learned by SHFR with the ECOC scheme can still dramatically enhance prediction
accuracy for the target domain. By combining all the above theoretical analyses, we can conclude
that the generalization error of our proposed method SHFR for multi-class HDA problems is small
and bounded with a proper ECOC coding matrix design.

5. Efficient Batch Decoding for SHFR

In this section, we present an algorithm to solve the proposed optimization problem (3) of SHFR in
detail. Recall that problem (3) contains dT LASSO problems with nonnegative constraints, which
can be solved by adapting existing algorithms like NNLS solvers (Cantarella and Piatek, 2004;
Slawski and Hein, 2011) or LASSO solvers, e.g., APG (Toh and Yun, 2010) and OMP (Zhang,
2009). However, the time complexity of these methods is O(ncdS) for each LASSO problem,
which makes problem (3) intractable when the source domain data is of very high dimensionality
and the number of LASSO problems dT is very large.

Recall that each of the optimization problems (3) can be cast as the following problem

min
gi

1

nc
‖bi −Dgi‖22 + λi‖gi‖1, (15)

s.t. gi � 0,

where bi ∈ Rnc×1 is the concatenated row vector containing wtTi for all the nc tasks, and D =

[w1
S w2

S · · · w
nc
S ]> ∈ Rnc×dS . For simplicity and without loss of clarity, we drop the subscript i

from gi and bi in our discussion. Given any g, let

ξ = b−Dg (16)

be the residual. Problem (15) can then be equivalently reformulated as the following problem

min
g�0,ξ

λ||g||1 +
1

2
||ξ||2, (17)

s.t. ξ = b−Dg.

Solving this problem directly can be very expensive when the source domain data is of very high
dimensionality. Following Tan et al. (2015a), we propose to solve problem (15) via a matching
pursuit method, called matching pursuit LASSO (MPL), as shown in Algorithm 1.

In Algorithm 1, the residual ξ0 is initialized by ξ0 = b since g0 = 0. At the t-th step, we first
choose a set of B components in g with the B largest values in D>ξt, and merge their indices Jt
into the active set It. We then solve a reduced problem whose scale is only O(nc|It|):

min
g�0,ξ

λ||g||1 +
1

2
||ξ||2, (18)

s.t. ξ = b−Dg,gIct = 0,
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Algorithm 1 Matching pursuit LASSO for solving the nonnegative LASSO problem.
Initialize the residual ξ0 = b, I0 = ∅, and let t = 1.
1: Compute q = D>ξt−1, choose the B largest qj , and record their indices by Jt.
2: Let It = It−1 ∪ Jt.
3: Let gIct = 0, and solve the subproblem (18) to update gIt .
4: Compute ξt = b−DgIt .
5: Terminate if the stopping condition is achieved. Otherwise, let t = t+ 1 and go to step 1.

where It denotes the index set of the selected columns from D and Ict is the corresponding com-
plementary set of It. This subproblem can be solved efficiently using a projected proximal gradient
(PG) method. Note that the number B in Step 1 is a small positive integer, e.g., B = 1. Due to the
nonnegative constraints g � 0, we find the elements with the B largest value in D>ξ rather than
|D>ξ|.

Batch-mode MPL. In Algorithm 1, solving each subproblem has a complexity of O(knc),
where k denotes the degree of the sparsity, namely k = |It|, while computing D>ξ has a complexity
of O(dSnc). Note that problem (3) has dT sub-problems as in (15). Therefore, computing D>ξ
will dominate the whole complexity of the decoding if both nc and dT are very large.

To address the above computational burden imposed by D>ξ, we propose a batch-mode MPL
(BMPL) algorithm. Note that D>ξ = D>(b − Dg) = D>b − D>Dg. We can pre-compute
β = D>b and Q = D>D, and store them in the memory. Since gIct = 0 for the t-th iteration,
we have D>ξt = D>b − [D>DIt ]gIt = β − QItgIt , where QIt denotes the columns of Q
indexed by It. The computation cost for D>ξ is thus reduced to O(knc), which saves considerable
computation cost when k � dS . Note that β and Q are shared by all the LASSO tasks, thus they
only need to be calculated once. With this strategy, the overall computational cost of solving (3)
when dS is large is significantly reduced to O(dTnck) (Tan et al., 2015a,b).

5.1. Complexity Comparison

We use linear SVMs to build the base classifiers for the source and target domains, which are ob-
tained using the Liblinear solver (Fan et al., 2008) and pre-trained offline. The learning of G is not
related to the number of training instances. According to the analysis in Section 5, the computa-
tional cost of SHFR is O(dTnck), where the sparsity degree k � dS . Compared to state-of-the-art
HDA methods, our proposed method is much more efficient. The MOMAP method transforms the
problem into c separate singular value decomposition (SVD) problems resulting in complexity of
O(4d2

SdT + 8dSd
2
T + 9d3

T ). The HeMap method is based on standard eigen-decomposition, whose
complexity is O(nS + nT )3. The ARC-t method solves an optimization problem that contains
nSnT constraints by applying an alternating projection method (e.g., Bregman’s algorithm (Censor
and Zenios, 1997)), resulting in complexity of dSdTnSnT . The HFA method adopts an alternating
projection method to solve a semidefinite program (SDP), where the transformation matrix to be
learned is in R(nS+nT )×(nS+nT ), resulting in time complexity bounded by O(nS + nT )3. There-
fore, ARC-t and HFA perform inefficiently when the data size is large. DAMA first constructs
a series of combinatorial Laplacian matrices in R(dS+dT )×(dS+dT ), and then solves a generalized
eigen-decomposition problem of time complexity bounded by O(dS + dT )3. DAMA is therefore
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Table 1: Complexity comparison of HDA methods.
Methods Complexity

MOMAP (Harel and Mannor, 2011) O(4d2
SdT + 8dSd

2
T + 9d3

T )

HeMap (Shi et al., 2010) O(nS + nT )3

DAMA (Wang and Mahadevan, 2011) O(dS + dT )3

ARC-t (Kulis et al., 2011) O(dSdTnSnT )

HFA (Duan et al., 2012) O(nS + nT )3

SHFR (our proposed method) O(dTnck)

computationally very expensive when the data dimensionality is high. The comparison in terms of
time complexity between different methods is summarized in Table 1.

6. Experiments

In this section, we conduct experiments on both toy and real-world datasets to verify the effective-
ness and efficiency of our proposed method SHFR for multi-class HDA. The parameter settings of
our proposed method and other baseline methods are as follows. For ARC-t and HFA, which re-
quire the use of kernel functions to measure data similarity, we use the RBF kernel for learning the
transformation. Parameter tuning is still an open research issue, as cross-validation is not applicable
to HDA problems due to the limited size of labeled data in the target domain. We therefore tune
the parameters of the comparison methods on a predefined range and report their best results on the
test data. We use linear SVMs as the base classifiers, the regularization parameter C of which is
cross-validated from the range of {0.01, 0.1, 1, 10, 100} on the source domain data, and we use it
for all the comparison methods. For our proposed method SHFR, we empirically set the maximum
number of iterations to 20, λ = 0.01 and B = 2 in the BGMP algorithm, and generate the ECOC
as long as possible for each dataset.

6.1. Experiments on Synthetic Datasets

We first compare the performance of different HDA methods in terms of recovering a ground-
truth feature mapping G on a 20-class toy dataset. To generate the toy dataset, we first randomly
generate 150 instances of 150 features for each class from different Gaussian distributions to form
a source domain XS ∈ R150×3,000. We then construct the ground-truth sparse feature mapping
G ∈ R100×150 using the following method: for each row i, we set Gij = 1/5, where j = i, i +
1, · · · , i+ 5, and Gij = 0 otherwise. This generation of G implies that each target domain feature
is represented by five source domain features. The ground-truth feature mapping is displayed in
Figure 2(a), where the dark area represents the zero entries and the bright area denotes nonzero
values of G. Lastly, we construct the target domain data XT ∈ R100×3,000 by using XT = GXS .
When conducting the experiment, we randomly select five instances per class from the target domain
data XT as the labeled training data, and apply different HDA methods on them together with all
3,000 source domain labeled data to recover the feature mapping G.

In this experiment, the HDA methods, DAMA and ARC-t, are adopted as the baselines. For ease
of comparison, we present the recovered matrix G for each of the three methods in Figures 2(b)-
2(d). From Figure 2(b), we observe that DAMA fails to recover the structure of G, while ARC-t
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(a) Ground Truth (b) DAMA

(c) ARC-t (d) SHFR

Figure 2: Illustration of the recovered feature mappings using different methods on the toy data.
Black represents 0 and white represents 1.

shows better performance as can be seen in Figure 2(c). However, the Gs recovered by these two
methods are not sparse. In contrast, SHFR can perfectly recover the sparse G with little noise as
shown in Figure 2(d). These experimental results demonstrate that by explicitly adding sparsity
constraints, SHFR is able to recover the feature mapping G more accurately.

6.2. Experiments on Real-world Datasets

We conduct experiments on three real-world datasets, Multilingual Reuters Collection, BBC Col-
lection, and Cross-lingual Sentiment Dataset, to verify the effectiveness and efficiency of SHFR.
The reported results are averaged over 10 independent data-split procedures.

6.2.1. DATASETS AND EXPERIMENTAL SETUP

Multilingual Reuters Collection2 is a text dataset with over 11,000 news articles from six cate-
gories in five languages, i.e., English, French, German, Italian and Spanish, which are represented
by a bag-of-words weighted by TF-IDF. Following the setting in Duan et al. (2012), we use Spanish
as the target domain and the other four languages as source domains, which results in four multi-
class HDA problems. For each class, we randomly select 100 instances from the source domain

2. http://multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.htm
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and 10 instances from the target domain for training. We randomly select 10,000 instances from
the target domain as the test data. Note that the original data is of very high dimensionality, and
the baseline methods cannot handle such high-dimensional features. To conduct comparison exper-
iments, we first perform PCA with 60% energy preserved on the TF-IDF features. We then obtain
1,131 features for the the English documents, 1,230 features for the French documents, 1,417 fea-
tures for the German documents, 1,041 features for the Italian documents, and 807 features for the
Spanish documents. In contrast to the baseline methods, we use original features for SHFR since it
can efficiently handle high-dimensional data.

BBC Collection3 was collected for multi-view learning, and each instance is represented by
three views. It was constructed from a single-view BBC corpora by splitting news articles into
related “views” of text. We consider View 3 as the target domain, and View 1 and View 2 as source
domains. Similar to the pre-processing on the Reuters dataset, we perform PCA on the original data
to reduce dimensions such that other baselines can be applied. The reduced dimensions for View
1, View 2 and View 3 are 203, 205 and 418, respectively. We randomly select 70% source domain
instances and 10 target domain instances for each class for training. The remaining target domain
instances are considered to be the test data.

Cross-lingual Sentiment Dataset4 consists of Amazon product reviews of three product cate-
gories: books, DVDs and music. These reviews are written in four languages: English, German,
French, and Japanese. We treat English reviews as the source domain data and the other language
reviews as the target data domain data. After performing PCA, the reviews are of 715, 929, 964,
and 874 features for English, German, French and Japanese, respectively. We randomly select 1,500
source domain instances and 10 target domain instances per class for training, and use the rest 5,970
target domain instances for testing.

6.2.2. OVERALL COMPARISON RESULTS

Comparison results between SHFR and other baselines on the three real-world datasets are reported
in Tables 2-4. From the tables, we observe that the SVMs conducted on a small number of target
domain data only, denoted by SVM-T, using either one-vs-one or one-vs-all strategy, perform the
worst on average. Moreover, the results of SVM-T using one-vs-one and one-vs-all, respectively,
are not consistent. For instance, on the BBC dataset in Table 3, SVM-T using the one-vs-all strategy
performs much better than SVM-T using the one-vs-one strategy, while on the sentiment dataset in
Table 4, SVM-T using the one-vs-one strategy performs much better than SVM-T using the one-
vs-all strategy. The reason is that the size of the labeled training data is too limited to train a
precise and stable classifier in the target domain. Compared to one-vs-all and one-vs-one, SVM-T
with ECOC shows much more stable performance and superior results on most problems, which is
because of the error correcting ability of ECOC when the labeled data is limited. The performance
in terms of classification accuracy of the HDA baseline methods, DAMA, ARC-t and HFA, are
comparable on the three datasets except for the BBC dataset, where DAMA performs much worse
than the other two methods. This may be because the performance of DAMA is sensitive to the
intrinsic manifold structure of the data. If the manifold assumption does not hold on the data, the
performance of DAMA drops significantly. Our proposed SHFR method using either the one-vs-one
or ECOC scheme performs best on the three datasets. SHFR can further improve the performance

3. http://mlg.ucd.ie/datasets/segment.html
4. http://www.uni-weimar.de/cms/medien/webis/research/corpora/corpus-webis-cls-10.html
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Table 2: Multilingual Reuters Collection: comparison results in terms of classification acc (%).
Results of SHFR are significantly better than the other baselines, judged by the t-test with
a significance level at 0.05.

Source SVM-T SVM-T SVM-T DAMA ARC-t HFA SHFR SHFR
Domain (1 vs all) (1 vs 1) (ECOC) (1vs1) (ECOC)
English

65.40±4.45 65.21±7.85 68.01±2.48

63.42±2.62 66.72±2.27 68.82±1.68 69.45±1.56 72.82±1.08
French 65.12±1.28 67.67±2.05 68.14±1.71 70.77±1.57 74.01±1.25
German 66.98±2.45 68.15±1.72 68.42±1.57 71.62±1.69 74.15±1.14
Italian 67.56±2.23 67.47±2.32 69.59±2.51 70.75±1.54 73.35±1.31

Table 3: BBC Collection: comparison results in terms of classification acc (%). Results of SHFR
are significantly better than the other baselines, judged by the t-test with a significance
level at 0.05.

Source SVM-T SVM-T SVM-T DAMA ARC-t HFA SHFR SHFR
Domain (1 vs all) (1 vs 1) (ECOC) (1vs1) (ECOC)
View 1 73.35±4.98 68.78±11.7 76.45±5.47 67.42±2.25 75.78±2.69 72.45±10.65 89.81±1.20 90.57±1.49
View 2 66.87±1.73 74.53±2.48 73.75±8.06 88.92±1.67 91.85±0.96

Table 4: Cross-lingual Sentiment Dataset: comparison results in terms of classification acc. (%).
Results of SHFR are significantly better than the other baselines, judged by the t-test with
a significance level at 0.05.

Target SVM-T SVM-T SVM-T DAMA ARC-t HFA SHFR SHFR
Domain (1 vs all) (1 vs 1) (ECOC) (1vs1) (ECOC)
French 48.40±3.45 58.30±5.01 57.45±3.17 55.18±3.46 53.46±5.18 56.46±3.42 60.80±3.08 62.12±2.61
German 49.78±5.12 61.62±6.31 62.18±4.51 56.60±3.72 57.29±2.17 55.14±3.15 63.85±3.46 65.57±2.32
Japanese 48.25±6.34 56.13±4.81 57.27±2.61 53.56±2.67 55.75±3.02 55.02±4.67 59.67±3.75 62.58±2.86

in terms of classification accuracy, compared to one-vs-one, using the ECOC scheme. The superior
performance benefits from both the global transformation of G and the error correcting ability of
ECOC. As discussed in Section 4.1, the recovered feature mapping G tends to be more accurate
with more constructed binary tasks.

6.3. Impact on Training Sample Size of the Target Domain

We verify the impact of the size of labeled training sample in the target domain to the overall HDA
performance in terms of classification accuracy. We vary the number of target domain training
instances from five to 20. In this experiment, we only report the results on the Reuters dataset,
where we use English as the source domain and Spanish as the target domain. The experimental
results are shown in Figure 3. From the figure, we observe that SHFR consistently outperforms
the baseline methods under different numbers of labeled training instance in the target domain. In
particular, SHFR shows significantly better performance than the baseline methods when the size
of the target domain labeled data is smaller than 10.

Based on Theorem 5, the overall generalization error of SHFR depends on the accuracy of the
binary classifiers generated based on ECOC. To empirically demonstrate this point, we report the
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Figure 3: Comparison of different HDA methods under varying size of target labeled data.
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Figure 4: Relationships between binary base classifiers and multi-class SHFR (ECOC).

averaged accuracy of all binary classifiers generated based on ECOC on the Reuters dataset under
varying numbers of labeled training instances in the target domain in Figure 4(a). We also report
the overall multi-class prediction accuracy versus the averaged accuracy of all binary classifiers in
Figure 4(b). From the figures, we see that more labeled target data leads to more precise target binary
classifiers, and thus leads to improvement in multi-class HDA classification in terms of accuracy. In
particular, we observe from Figure 4(b) that the multi-class classification accuracy is proportional to
the averaged binary task accuracy. The reason is that more precise target binary classifiers generally
induce better alignment between the target and source classifiers.

6.4. Impact on Dimensionality of the Target Domain

In this experiment, we aim to compare the performance of different HDA methods under varying
dimensionality of the target domain data. Here, we only report experimental results on the English-
Spanish HDA task on the Reuters dataset. We first select 5,000 of the most-frequent features in
the English domain as the source domain. We vary the dimensionality of the Spanish domain, i.e.,
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Figure 5: Comparison of different HDA methods under varying dimensions of target labeled data.

Table 5: Comparison in correlation
∑

ji |ρji|.
Coding Scheme English French German Italian

1 vs all 0.8532 ± 0.1358 0.7557 ± 0.1289 0.2738 ± 0.0245 0.9331 ± 0.5701
1 vs 1 0.3374 ± 0.0290 0.2509 ± 0.0576 0.1168 ± 0.0110 0.3322 ± 0.1679
ECOC 0.1349 ± 0.0142 0.1478 ± 0.0225 0.0732 ± 0.0145 0.1725 ± 0.1047

the target domain, in the range of {500, 1000, 2000, 3000, 5000} by selecting the most-frequent
features of this domain. The results are shown in the Figure 5, from which we observe that SHFR
consistently outperforms other baselines, especially when the dimensionality of the target domain
data is low.

6.5. Incoherent Dictionary D Construction

In this experiment, we adopt the summation of absolute value of all pairs of columns in the dictio-
nary D to evaluate D’s coherence degree, i.e.,

∑
ji |ρji|. In other words, the smaller the value of∑

ji |ρji| is, the more incoherent the dictionary is (Zhang and Huang, 2008). The results of different
coding schemes on the Reuters dataset are summarized in Table 5. From the table, we observe that
ECOC can be used to significantly reduce the coherence degree to enable better construction of the
dictionary for the formulated compressed sensing problem.

6.6. Error Correction through Learning a Global G

As discussed in Section 4, the weight vectors of the binary classifiers constructed in the target
domain, i.e., {wT }s, may be unreliable due to the lack of target labeled data, which may affect the
estimation of G. To verify that SHFR can correct the bias of some binary classifiers, we conduct
comparison experiments between SVM-T and SHFR in terms of classification accuracy on each
binary task on the Reuters dataset. The results are shown in Table 6, where each column corresponds
to a binary task, indexed by k ∈ {1, · · · , 15}. From the table, we observe that the predictions
of SVM-T on some binary tasks are inaccurate due to the limited number of labeled data. The
accuracy is even below 50% (numbers in boldface). However, by learning the transformation G
jointly among all the binary tasks, we are able to reduce the bias of the weak binary classifiers,
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Table 6: Comparison results on each binary task in terms of classification accuracy (%).
Binary Classifiers 1 2 3 4 5 6 7 8

SVM-T 74.42 67.98 85.67 82.53 43.32 75.95 66.30 73.92
SHFR 65.39 84.81 82.45 94.28 80.76 76.75 79.74 84.63

Difference -9.03 16.82 -3.22 11.75 37.44 0.80 13.44 10.70
Binary Classifiers 9 10 11 12 13 14 15

SVM-T 42.78 76.56 78.32 65.43 72.74 46.56 49.71
SHFR 84.45 70.07 90.35 81.35 83.97 80.75 86.43

Difference 41.67 -6.49 12.03 15.92 11.23 34.20 36.72

and increase accuracy by more than 30% on average. Experiments on the other two datasets return
similar results, where the performance in terms of accuracy of the binary classifiers obtained through
G is increased by 26.53% on the BBC dataset and 3.01% on the Sentiment dataset on average,
compared to the results generated by SVM-T.

The experimental results in Table 6 also verify why SHFR outperforms ARC-t in the experi-
ments shown in Tables 2-4 and Figure 3. ARC-t aims to align the target data with the source data
via a transformation G that is learned from similarity and dissimilarity constraints. The constraints
are constructed from a large number of source domain labeled data and a few target domain labeled
data. In the multi-class setting, the number of similarity constraints to be constructed when the
number of classes is large is much smaller than the number of dissimilarity constraints due to the
limited number of target domain labeled data. In contrast to ARC-t, SHFR tries to align the target
classifiers with the source classifiers using transformation G, which is shared by all the induced
binary tasks or classifiers. In other words, G is estimated through all classifiers. By borrowing
the idea from multi-task feature learning which jointly optimizes all classifiers to learn a global
feature transformation G, is still possible to estimate a stable and precise G for multi-class HDA.
Furthermore, as discussed in Section 4.3, ECOC with a well designed coding matrix is powerful for
correcting error, as shown in Table 6.

6.7. Impact of Dichotomizer Size on Classification Error

As proven in Section 4, the generalization error of SHFR for multi-class HDA depends on the
averaged loss over all the tasks, which relies on two factors: the number of classifiers (or measure-
ments) and the degree of sparsity on G. When G is sparse and the constructed binary classifiers
are sufficient, it is possible to recover a precise G by using the dictionary constructed by wS . To
demonstrate how the generalization error of SHFR changes under varying numbers of classifiers or
dichotomizers, we conduct experiments on the Reuters dataset.

Experimental results are showed in Figure 6. From this figure we observe that when more di-
chotomizers are constructed, the predictions are more accurate in the target domain. This verifies
that having more dichotomizers provides more information to recover the feature mapping G. Fur-
thermore, the standard deviation decreases with the increasing number of dichotomizers; however,
as observed from the figure, multi-class accuracy no longer increases when the number of classifiers
reaches 31. There are two reasons for this observation: 1) the redundancy in information among the
constructed binary classifiers prevents improvement in estimating G, and 2) according to Garcı́a-
Pedrajas and Ortiz-Boyer (2011), when there are many dichotomizers, the minimum distance in
ECOC becomes small, which decreases the error correction ability. In general, SHFR obtains bet-
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Figure 6: Accuracy vs dichotomizer (or task) size.

Table 7: Impact of Nonnegative Constraints and L1 Norm Regularization: comparison between the
results of different solvers in terms of classification accuracy (%). Results of SHFR are
significantly better than the other baselines except for the cases denoted with *, judged by
the t-test with a significance level at 0.05.

Dataset Domain SHFR-LASSO SHFR-NNLS SHFR

Reuters

English 67.08±1.63 71.47±1.56 72.82±1.08
French 67.17±1.26 72.08±1.19 74.01±1.25
German 69.56±1.28 73.62±1.75* 74.15±1.14
Italian 68.19±2.51 71.98±1.78 73.35±1.31

BBC View 1 84.72±2.18 88.66±1.29 90.57±1.49
View 2 87.06±2.01 90.25±1.43 91.85±0.96

Sentiment
French 56.12±2.30 60.17±2.05 62.12±2.61
German 58.83±2.24 63.47±1.49 65.57±2.32
Japanese 56.72±1.81 61.51 ±1.76* 62.58±2.86

ter and more stable performance in terms of classification accuracy with an increasing number of
dichotomizers.

6.8. Impacts of Nonnegative Constraints and `1 Norm Regularization

As discussed in Section 4, similar to the motivation of NMF, the nonnegative constraints on G
are to approximate the “input vectors” (i.e., target features) by nonnegative linear combinations of
nonnegative “basis vectors” (i.e., source features). The idea of nonnegative linear relationship can
also be found in multiple kernel learning, where the target kernel is approximated by the nonnegative
linear combination of base kernels. To verify the impact of the nonnegative constraints on G, we add
a baseline for comparison by moving the nonnegative constraints from the the optimization problem
of SHFR, which is denoted by SHFR-LASSO. In this case, the model is reduced to a typical lasso
problem.
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Regarding the `1 norm regularization term in SHFR, note that some studies in the literature have
shown that Non-Negative Least Squares (NNLS) can indeed achieve sparse recovery of nonnega-
tive signals in a noiseless setting (Bruckstein et al., 2008; Donoho and Tanner, 2010; Wang and
Tang, 2009; Wang et al., 2011). However, the noiseless assumption does not hold in practice. As
mentioned by Slawski et al. (2013), apart from sign constraints, NNLS only consists of a fitting
term, and thus is prone to overfitting, especially when the training data is high-dimensional. The
`1-norm regularizer is therefore necessary to prevent over-adaptation to noisy data and enforce de-
sired structural properties of the solution, which is similar to the idea of adding sparsity to the vector
of coefficients of a predictive model (Slawski et al., 2013). In our proposed optimization problem
(1), it is insufficient to achieve desirable solution of G without the `1-norm term in the objective
since both wt

S and wt
T are of high dimensionality, and some of {wt

T }’s are not precise. As stated in
Theorem 1 in Slawski and Hein (2011), exact sparsity, i.e., `1-norm, is not needed when the matrix
satisfies the self-regularizing property, which is not applicable to our optimization problem as G
does not have this property. Using the `1-norm ensures that a more sparse solution can be achieved
by using nonnegative constraints. To verify the impact of the `1-norm on G, we add another base-
line for comparison by moving the `1-norm from the the optimization problem of SHFR, which is
denoted by SHFR-NNLS. In this case, the model is reduced to an NNLS problem. In this paper, we
adopt the NNLS solver proposed by Cantarella and Piatek (2004) to solve it.5

The results on the three multilingual datasets are summarized in Table 7. We observe from the
table that SHFR-LASSO performs the worst and SHFR-NNLS enhances its performances through
the nonnegative constraint. This is probably because the feature mapping G is learned globally
and the features are naturally nonnegative for text classification. As SHFR explicitly imposes both
nonnegativity and sparsity in learning the transformation G, it can further enhance the performance
compared to SHFR-NNLS by avoiding over adapting the noise in the high-dimensional data.

6.9. Experiments on Removing Negative Alignment

We have observed from Table 6 that the accuracy of SHFR for some constructed binary tasks is
slightly less than the accuracy of SVM-T after learning and using the transformation G, which can
be referred to as negative transfer (Pan and Yang, 2010). The problem of negative transfer in SHFR
mainly occurs for the following two reasons:

1. Negative alignment between the source and target classifiers, which happens when the clas-
sification accuracy of the corresponding target classifier is below 50%. This is because some
initial target classifiers are less accurate due to the limited number of target domain labeled
data.

2. The transformation G is class-invariant, therefore G is enforced to generalize well on all
classifiers. In this case, G may correct the bias of some weak classifiers, but may also smooth
the strength of good classifiers.

In this experiment, we study how the performance of SHFR is affected by removing negative
alignments, and how SHFR performs if only good target classifiers whose accuracy is above 50%

5. In practice, the nonnegative lasso problem has been well studied and applied to many applications such as dimension-
ality reduction (Wang and Ye, 2014) and index tracking (Wu et al., 2014). Nevertheless, how to solve the nonnegative
lasso problem is not the focus of our paper. In this paper, we address it by modifying the algorithm proposed by Tan
et al. (2015a,b), which has demonstrated superior performance over many state-of-the-art solvers.
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Table 8: Comparison results on each binary task after removing negative alignment in terms of
classification accuracy (%).

Binary Classifiers 1 2 3 4 5 6 7 8
SVM-T 74.42 67.98 85.67 82.53 43.32 75.95 66.30 73.92

SHFR-RN 85.39 83.26 86.45 92.43 83.79 78.19 77.45 81.28
Difference 10.97 15.28 0.87 9.90 40.47 2.24 11.15 7.36

Binary Classifiers 9 10 11 12 13 14 15
SVM-T 42.78 76.56 78.32 65.43 72.74 46.56 49.71

SHFR-RN 84.15 78.45 92.14 82.12 84.58 82.72 88.61
Difference 41.37 1.89 13.82 16.69 11.84 36.16 38.90

are used. We investigate whether dropping negative alignments improves accuracy on all the binary
tasks as well as the final multi-class HDA classification problem. Experimental results are shown in
Table 8 and Figure 7. Compared to the results in Table 6, we discover from Table 8 that by removing
the negative alignments we can improve all binary classification performances in terms of accuracy,
and thus avoid negative transfers. We sort the binary tasks created from ECOC according to the ac-
curacy on the test data and remove the poorly designed tasks. From Figure 7, we observe that when
the number of dichotomizers is small (e.g., less than 30), SHFR with negative alignment removed
achieves better performance in terms of multi-class classification accuracy. However, in practice, it
is difficult to evaluate target classifiers due to the limit number of target domain labeled data. Inter-
estingly, we can also find from Figure 7 that when the number of dichotomizers or tasks is sufficient,
the classification accuracy of SHFR with or without removing negative alignments converges to the
same value. This is because sub-class partition in ECOC often leads to higher binary accuracy when
creating many dichotomizers or tasks. In this case, there are fewer binary target classifiers whose
accuracy is below 50%. Therefore, we can conclude that SHFR with negative alignments removed
enhances the performance in terms of classification accuracy when there are insufficient classifiers.
In the multi-class HDA setting, however, the difficulty in alignment evaluation makes this post-
processing impractical. Fortunately, SHFR can achieve the same performance as SHFR-RNs when
there are sufficient dichotomizers or tasks, which makes SHFR more practicable for the multi-class
HDA problem.

6.10. Training Time Comparison

Lastly, to verify the computational efficiency of SHFR, we conduct two experiments to compare
the training time in learning the feature mapping between SHFR and other baselines under varying
numbers of data dimensions and data instances. These experiments are conducted on a toy dataset,
where the dimensions of the source and target data are constructed to be the same. In the first exper-
iment, shown in Figure 8(a), we fix the number of training data (including both source and target do-
main data) to 3,000 and vary the data dimensions in the range of {100, 200, 500, 1000, 2000, 5000}.
We observe that SHFR performs faster than all the baselines, and its training time increases slowly
with the number of data dimensions. This is because the time complexity of SHFR has a linear
relationship with the target domain dimensions. We can also see that the training time of DAMA
increases dramatically when the number of data dimensions increases. In contrast, the training time
of HFA and ARC-t does not increase much when the number of data dimensions increases. This
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Figure 7: Accuracy v.s. dichotomizers size on removing tasks with negative alignment.
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Figure 8: Time complexity comparison

is because these two methods adopt the kernel technique such that the computational time depends
on the number of data instances instead of the data dimensions. In the second experiment, shown
in Figure 8(b), we fix the data dimension to 1,000 and vary the number of training instances in
the range of {100, 500, 1000, 2000, 5000}. From the figure, we observe that the training time of
SHFR changes slightly when the number of training instances increases. However, the training
time of ARC-t and HFA increases polynomially when the number of training instances increases.
These two experiments verify the superiority of SHFR in computational efficiency compared with
the baseline methods.

7. Conclusion and Future Work

In this paper, we propose a sparse heterogeneous feature representation (SHFR) method for
learning sparse transformation between heterogeneous features for HDA by exploring the common
underlying structures of multiple classes between the source and target domains for multi-class
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HDA. SHFR encodes the sparsity and class-invariance properties in learning the feature mapping.
Learning feature mapping can be cast as a Compressed Sensing (CS) problem for SHFR. Based on
the CS theory, we show that the number of binary learning tasks affects the multi-class HDA per-
formance. In addition, the proposed method has superior scalability over other methods. Extensive
experiments demonstrate the effectiveness, efficiency, and stability of SHFR.

In future, we would like to investigate how to extend the proposed method by exploring the
nonlinear feature transformation between image and text feature representations.
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